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NOTES 

Reduction and Reoxidation Behaviour of y-Bi,Mo06 

Bismuth molybdenum oxides are well- 
known catalysts for the selective oxidation 
of olefins. For the oxidative dehydroge- 
nation of I-butene to butadiene. it was 
suggested (I) that y-Bi7MoOh (koechlinite) 
has the highest activity of these oxides. 
although subsequent results (2) implied that 
surface coatings of /3-Bi2M0209 are primar- 
ily responsible for catalytic activity. The 
oxidation process has been demonstrated 
(3-5) to be an example of intrafacial cataly- 
sis. but the detailed chemistry of partially 
reduced catalysts remains unclear. For ex- 
ample, whereas X-ray diffraction patterns 
(6) of catalysts reduced in I-butene at 470°C 
were attributed to BilMoOi.T, EPR (7) and 
XPS (8) measurements on hydrogen- 
reduced samples indicated the presence of 
Mo4+ (MOO?) rather than MO’ +. TPR inves- 
tigations in conjunction with Auger elec- 
tron spectroscopy revealed that samples 
reduced in propylene contained Bi and 
MOO: (9). Reoxidation occurred in two 
stages: at 158°C Mo4+ was oxidised to 
Mob+ and Bi” to Bi’“’ (0 < m < 3). where- 
as at 340°C complete oxidation to Bi” re- 
sulted. X-ray diffraction was unable to re- 
veal the nature of this two-stage process. In 
an attempt to explain more fully the redox 
properties of Y-Bi3MoOh. partially reduced 
samples have been carefully examined 
using X-ray diffraction and thermal 
analysis. 

Y-Bi2MoOh samples were prepared using 
two methods described in the literature: 
these were slurry reactions between 
BiON03 and H2Mo04 (IO), and precipita- 
tion from Bi(NO& . 5H20 and (NH4)6M07 
OZ4 * 4H20 solutions (II), respectively. The 
results discussed below were applicable to 
samples from both routes. The preparation 

of nonstoichiometric samples Bi2M006-r 
(0 < s 5 0.5) was attempted by grinding 
together Bi?Oj, MOOR, and MOO? in appro- 
priate stoichiometric proportions, sealing 
the mixtures in evacuated quartz tubes, and 
heating at 500°C for 6 h. Chemical reduc- 
tion of y-BiZMoOh samples was effected in a 
closed system of known volume using l- 
butene and a range of pressures and tem- 
peratures. Reoxidation in flowing oxygen 
was examined by DTA and TGA using a 
Stanton-Redcroft STA 780 thermal anal- 
yser at a heating rate of IO K min’. Powder 
X-ray diffraction patterns were recorded 
on a Philips 1050/70 diffractometer using 
CuKa radiation. 

Attempts to prepare nonstoichiometric 
y-B&Moo,,-., in evacuated quartz tubes 
were unsuccessful and always resulted in 
detectable quantities of Bi and MGO? in 
X-ray diffraction patterns, even for an 
oxygen stoichiometry appropriate for Bil 
MoOm+ X-ray profiles for “Bi2MoOc 5” 
and BilMoOh are compared in Figs. la and 
I b. The variation of Bi content with overall 
composition was estimated by reference to 
the relative intensities of the most intense 
reflections, 014 for Bi and 131 for y-B& 
MoOh. The Bi concentration decreased 
with x in BiZMo06-., and reached zero at an 
extrapolated value corresponding approxi- 
matcly to BizMoOh (Fig. 2). The koechlinite 
phase thus appears unable to accommodate 
a significant degree of oxygen deficiency, 
which is contrary to a previous report (6). 

Reduction of y-BizMoOh in I-butene at 
350°C produced a green material with an 
X-ray diffraction pattern identical to that of 
the original yellow catalyst irrespective of 
the initial pressure of I-butene. i.e., the 
amount of reducing agent available to the 
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FIG. 1. X-ray diffraction patterns for (a) y-BizMo06, 
(b) “BizMo05.s”, and (c) y-B&Moo6 reduced in I- 

butene at 470°C and reoxidised at 225°C. 

catalyst. DTA conducted under flowing ni- 
trogen, however, indicated the presence of 
small amounts of Bi, since the endotherm at 
261”C, Fig. 3a, is consistent with the melt- 
ing point of Bi. The absence of Bi X-ray 
diffraction peaks suggested that either the 
Bi concentration was very low (in agree- 
ment with TGA results which showed no 
significant weight increase on reoxidation) 
or the particle size was very small. At this 
low temperature, Bi could possibly form as 
a film on the surface of the catalyst parti- 
cles, and such surface reduction of Biz 
O:+ layers has previously been proposed to 
explain the enhanced electrical conduc- 
tivity of reduced bismuth molybdenum ox- 
ides (It). 

For samples reduced at higher tempera- 
tures, e.g., 470°C. blue-black products 
were generally obtained, and X-ray diffrac- 
tion patterns. which were similar to that 
shown in Fig. lb, clearly indicated the 
presence of Bi and MOO:! in addition to 
unreduced BizMo06. The extent of reduc- 
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Oxygen stoichiometry 

FIG. 2. Variation of Bi concentration with nominal 

oxygen content for reduced y-Bi?MoO, samples. 

tion was determined by the initial pressure 
of I-butene, and for very low levels of 
reduction samples were green rather than 
blue-black. 

DTA traces for oxidation of a catalyst 
prereduced at 470°C exhibited two exother- 
mic peaks with maxima at approximately 
205 and 325°C (Fig. 3b). These peaks are 
consistent with the two-stage reoxidation 
observed in the previous TPR study (9). 
TGA for the reoxidation process (Fig. 3c) 
indicated a 69:3 I ratio for oxygen absorbed 
at the lower and higher temperatures. The 
chemical changes occurring at these tem- 
peratures were investigated by X-ray dif- 
fraction. At the low-temperature step. Bi 
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FIG. 3. DTAlTGA traces from y-Bi?MoO, prere- 
duced in I-butene: (a) DTA in nitrogen after reduction 
at 350°C. (b) DTA in oxygen after reduction at 470°C. 
and (c) TGA in oxygen after reduction at 470°C. 
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peaks disappeared from the diffraction pat- 
tern and were replaced by a P-Biz03 phase: 
peaks attributed to MoOz, however, re- 
mained unchanged, as shown in Fig. Ic. 
The second step was found to relate to total 
oxidation to Bi2MoOh. A significant feature 
of the TGA data is their implication that 
the low-temperature stage actually corre- 
sponds to Bi oxidation to P-Bi102.78, with 
the subsequent process being the transfor- 
mation of P-Bi~0~.7X and MOOT to B&MOO+ 
This observation appears consistent with 
Auger spectroscopy results (9). which sug- 
gested oxidation of Bi to BP+ (0 < m < 3) 
during the low-temperature stage, although 
the nature of this material could not be 
established. The present study, however. 
does not support the view that simulta- 
neous oxidation of MO’+ to Mob’ occurs at 
this temperature. since both X-ray diffrac- 
tion and TGA results are consistent only 
with this oxidation relating to the high- 
temperature exotherm. This apparent dis- 
agreement may simply reflect differences 
between surface and bulk properties. 

The initial oxidation product may seem 
unusual since P-B&O3 is generally regarded 
as metastable, with a-Bi203 being the stable 
low-temperature form (13). P-Bi203, how- 
ever, has previously been observed dur- 
ing the reoxidation of a bismuth molyb- 
denum oxide (14) and is the product of the 
thermal decomposition of Bi202COI at 
400°C. Since the B&O:’ layers present in 
Bi102C03 and y-Bi2MoOh have a Bi and 0 
structural arrangement which is found in 
/3-B&03 but not a-Biz03 c/5), it is possible 
that these layers act as nucleation sites for 
the preferential formation of /3-Biz03. 

The existence of oxygen-deficient P-B& 
03 samples, e.g., Biz02.5 and B&O?.,. has 
previously been reported (16, 17) for thin 
film specimens. X-ray and electron diffrac- 
tion studies revealed that the cation sublat- 
tice is essentially the same as that for the 
fully oxidised phase such that the oxygen 
stoichiometry cannot be established using 
X-ray diffraction. Treatment of P-Bi@m, 
films in oxygen was found to result in 

gradual oxygen uptake towards the stoi- 
chiometric material (16), and similar beha- 
viour was observed in the present study of 
Bi oxidation on B&Moo6 catalysts, since 
maintaining samples at 220°C for 4 h pro- 
duced a weight increase consistent with the 
formation of stoichiometric P-Bi203. 
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